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ABSTRACT

A new technique, based on the
matrix representation of linear opera-
tors, is presented to solve the inverse
problem of finding out a linear opera-
tor of known eigenvalues and eigenvec-
tors. The technique solves the discon-
tinuity of a junction between a rectan-
gular waveguide and and a shielded
microstrip. Experimental measurements
achieved are in good agreement with
the theoretical results.

BASIC FORMULATION

The junction to be studied is
shown in Fig. 1. It is composed of a
transition from an empty rectangular
waveguide to a shielded microstrip of
the same width but with a smaller
height. A cross-section at the discon-
tinuity plane (z=O) is shown in Fig.2.
As can be seen, the structure can be
divided into three regions:
a- Region(l) : (O~x~a, o :y&b , z~o),
b- Region(2) : (O~x<a, dl~y&d2r Z~o),

C– Region(3) : (O~x~a, d2~y~b , zLO),

where regions (2) and (3) constitute
together the shielded microstrip and
region (1) constitutes the empty rectan-
gular waveguide. All metallic bounda–
ries are assumed to be perfectly conduc-
ting. The boundary conditions at the
junction interface are obtained by mat–
thing the electromagnetic field compo-
nents at both sides of the interface
plane (z=O).

At tQe left hand side of the inter-
face (z=O ), there exists only region(1)
which is bounded by (O<x<a, O<y<b). The
field components at this side can be
expressed as:

co

Ex=; x cos(pmx/a)sin(q~y/b)
z ‘Pqp=o ~=1

(l-a)
.

E= ~ Ey sin(pmx/a)cos(q~y/b)
Y pL q=o pq

(l-b)

m .

EZ=Z
z

sin(pmx/a)sin(qny/b)
P=l q:lEPq (l-c)

cow

HX=X Hx sin(pmx\a)cos(qny/b)
p=l q:o Pq

( l-d)
mm

H
Y=

z Z H~q cos(p~x/a)sin(q~y/b)
p=() q=l

( l-e)

CDCv

Hz = Z Z Hz cos(pnx/a)cos (qny/b)
p=o q=l Pq

(P,q)#(o,o)
(l-f)

where E
x , Ey
Pq Pq’

E;q, Hx Hy and Hz
pq’~ F4

are

field expansion coefficients. If it is
assumed that the wave is incident from
(z=-co) , then incident and reflected modes
are existing in region (1) and therefore
any of the above field expansion coeffi-
cients is composed of both incident and
reflected parts, e.g.:

Ex =E+ +E-
Pq Pcl Pq

Hx=H+ -H-
Pq Pq Pq

(2-a)

(2-b)

The other expansion coefficients are
linear combinationsof E+pq ‘ ‘Pq

, H+ and
P!l

H;a . The z-dependence of the (p,q) mode
.–.

is assumed to have the form exp(-y z) I
where: Pq

Y;q =(p~/a)2+(qr/b)2-k~, k; = LJ2 Uoeo

(3)

The first region at the right hand
side of the interface (Z=O+) is a perfec-
tly conducting step bounded by(O~y~a ,

O~y~dl) . In this region there ex~sts an

unknown surface current ~s (x,y)given by:

_s (X,y)=J~(X,Y)~ + J~(x,Y) $J (4)

The two components of this surface cur-
rent can be expanded as follows:

.
J~(x,y)= X J~p(y)cos(pnx\a)

p=o
( 5-a)
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Fig.3 Reflection Coefficient of the dominant mode.



J~(X, Y)= ~ Jy (y)sin(pnx/a)
~=1 SP

(5-b)

The second and third regions at
right hand side of the interface are the
two regions of the shielded microstrip
that are bounded by (O~x~a, d1$y~d2)

and (O<x<ar d <y<b). The field Compo-

nents ?n=regi~; 72) can be expressed as:

mm xl
Ex=.z Tn E cos(pnx/a) sin~np(y-dl)

p=o z npn= 1
(6-a)

Ey= ~ ~ Tn EY1 sin(pnx/a)cos~np(y~l)
npp=l n=l

(6-b)
.

Ez= ; Tn E ‘1 sin(pn/x)sin6np(y-dl)
p=l x np~=1

(6-c)
m

Hx= ; Tn H~~ sin(p~x/a)cos6np(y-dl)
n=lp=l x

(6-d)
.

H=; Tn HY1 cos(pnx/a) sin(3 np(y-dl)
Y P=o & np

(6-e)
.

Hz= ; x Tn H ‘1 cos(pnx/a)cos6np(y-dl)
npP=() n=l

(6-f)

where the z-dependence of the n-th nor-
mal mode in the shielded microstrip is
assumed to have the form exp(-Ynz) ,and:

2
B:p = Nk~ + y: - (pm/a) (7)

E
xl

,E yl EZ1, HX1, H~~ and HZ1 are
np np’ np np np

expansion coefficients.

The field components in region (3)
are given by a set of equations similar

. . m
to equations (6) when reP~-cin9 E~~ r“”-

Z1
by E

x2
and H . . . andH

np np’
respecti-

ng’
vely, and @np (y-dl) by anD (b-y) ~ where:

-,
2 2 2

a = k: + Yn - (pm/a)
np

(8)

xl
The expansion coefficients E–_J . . .

11p
21

,E
x2 -

H
Z2

H
np np ‘ ““”’ np

of the n-th normal

mode are all related together, and if
each mode is normalized (e.g. to carrY
a unity power) , then the only unknowns in

equations (6) and the corresponding

equations representing the field in
region (3) are the transmission coeffi-
cients of the different microstrip modes
Tn.

BY matching the field components at
the left and right hand sides of the
interface plane (z=O) , the followin9
equations are obtained:

b

9;(Y)+ f f;(y’)K;(y,y’) dy’=h;(y) -d;(y),
d2

(d2 =Y=< <b) andp=o , 1, 2~... (9-a)

b

f;(y)+ ~2 g:(y’)k;(yry’)d~’=h;(y)-d:(y)J

(d2~y&b) andp=lr Zr 31 .-. (9-b)

Let the linear integral operators ~e and
~h

P
~ be defined as:

b

~; [f(y)]= J f(y’)k; (y,y’)dy’,
d2

(d2 &y$b) andp=O ,1,~~, . . . (lO-a)

-h

‘P
[g(y)] ‘%2 g(y’)$yry’)dy’ ,

(d2 ~y~b) andp=l, 2, 3, . . . (lO-b)

Also, let the linear operators L;

and L: be defined in such a way that

their eigenfunctions are sin anp(b-y) and

Cos lxnp (b-y), respectively , with cor-

responding eigenvalues (Yn/a~p) and(l~n),

respectively. EqUatiOn (9) can be then
re-writen as:

z; [f;(y)] +C; [f;(y) ]=h;,(y)- d;(Y)

(d2~y~b) and p = O, 1, 2,... (n-a)

Lh [f;(y)] + ~; [f;(y)] =:h;(y)- d;(y)
P

(d2$y~b) and p = 1, 2, 3,... (n-b)

MATRIX REPRESENTATION OF
OPERATOR EQUATIONS

According to the concept of matrix
rermesentations of linear operators[l-41
the following can be staked:
The matrix representation “A” of the
linear operator “L” with respect to the

set of complete and orthogonal functions
{un} has the elements anln given by:

*
a = <u

n’
L [urn]> (12)

nm

where the form<$,$> represents the dot
product of the two functions~ and +.
Another matrix representation of the same

operator is the diagonal matrix “A”
which represents “L” with respect to the

set of its eigenvectors {vn}. The ele-
ments of “A” are just the eiqenvalues of
“L” . The two matrices “A” and “A” are
related by:
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A . T AT-l (13)

where “T” is the linear transformation
that transforms the representation with
respect to the set {vn} to that with

respect to the set {un} . The elements

t of the matrix “T” are given by:
run

*
t = <u Vm>

nm n’
(14)

Any function “f” belonging to the
domain of the linear operator “L” has
also two ~olumn vector representations
11~11 and “X” with respect to the sets
{un} and {vn} , respectively. The two

vectors are related by:

X=T~ (15)

The elements x of the column vector
“x “ are qiven ‘by:

*
x = <u , f>

n n
(16)

Because the period of definition
of all the functions existing in ecma-
tion (11) as (d2 ~y~b), the dot product

of the two
defined on

<f ,g>=

The set of
by:

functions f(y) and g(y),
[d2 , b], may be defined as:

b
r f(y) g(y) dy (17)
d2
functions {Un(y)} defined

Un(y) = exp(j2nny/(b-d2))/ w,

n= O , + 1, + 2, . . . (18)

is a complete and orthogonal one on

[d2 , b].

The operator equation (11) can be
easily proved to have the following
matrix forms:

(T; IL: + A-e T;) X-e = Ye ,
P P P

p=o, 1, 2, . . . (19-a)

p=], 2, 3, . . . (19-b)

NUMERICAL RESULTS

If the amplitude distribution of
the incident modes E+ and H+ is known

Pq Pq
equation (19) can be solved numerically
for the amplitude distribution of the
transmitted modes Tn. The amplitude

distribution of the reflected modes E-
Pq

and H- is obtained then in terms of the
Pq

incident and transmitted distributions.

The simple case of dominant mode inci-
dence, in which all coefficients E+ and

H+
+ Pq

are zeros except for Hlor is solved.
pq

The theoretical and experimental values
of wave~uide dominant mode reflection
coeffic~ent defined as:

~h
10 = (H;. / H;o) (20)

are plotted in Fiq. 3 over the X-band for
the sake of comparison. The results are
in good aqreement except for the higher
ranqe of the X-band. The following rea-
sons account for the deviation between
the two plots.

a-

b-

c-

d-

The accuracy in reading the experi-
mental values, as they were taken
visually from the screen of the net-
work analyzer.

Tolerance in the measured structure
dimensions and the value of the sub-
strate dielectric constant.

The truncation made in the matrix
equation (19) which is essentially of
infinite order.

The Darasitic discontinuities existin~
in tke measured structure due to the ‘
surface finishing as well as the
solder points.

The marked deviation at high freque-
ncies between the theoretical and experi-
mental results is mainly due to the fact
that the different modes of the shielded
microstrip were obtained numerically by
looking for the roots of a determinental
equation. This contains successive poles
and zeros that become nearer as the fre-
quency is increased, accordingly the
accuracy of finding the roots is decrea-
sed and the possibility of missing a root
is increased as the frequency is increa-
sed.
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