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ABSTRACT

A new technique, based on the
matrix representation of linear opera-
tors, is presented to solve the inverse
problem of finding out a linear opera-
tor of known eigenvalues and eigenvec-
tors. The technique solves the discon-
tinuity of a junction between a rectan-
gular waveguide and and a shielded
microstrip. Experimental measurements
achieved are in good agreement with
the theoretical results.

BASIC FORMULATION

The junction to be studied is
shown in Fig. 1. It is composed of a
transition from an empty rectangular
waveguide to a shielded microstrip of
the same width but with a smaller
height. A cross-section at the discon-
tinuity plane (2=0) is shown in Fig.2.
As can be seen, the structure can be
divided into three regions:

a- Region(l):(0gxga, 0 gysgb , z50),
b- Region(2):(0gxga, dléyédZ’ z;O),

c- Region(3): (0gxga, dzéy;b : 220),

where regions (2) and (3) constitute
together the shielded microstrip and
region (1) constitutes the empty rectan-
gular waveguide. All metallic bounda-
ries are assumed to be perfectly conduc-
ting. The boundary conditions at the
junction interface are obtained by mat-
ching the electromagnetic field compo-
nents at both sides of the interface
plane (z=0).

At the left hand side of the inter-
face (z=0 ), there exists only region(l)
which is bounded by (0O<x<a, 0<y<b). The
field components at this side can be
expressed as:

oo o3

E, = I T EX_ cos(pTx/a)sin(qry/b)
x & > Eog
P e (1-a)
- 1. 7 5Y si
Ey p=1 q£0 qu sin(prx/a)cos(qny/b)

(1-b)
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E = I y EZ sin(prx/a)sin(gry/b)
p=1 q=1 P9 (1-¢)
H = % s HX sin(prx/a)cos(qry/b)
p= g (1-d)
H = © ¢ HY cos(prx/a)sin(qry/b)
p=vd (1-e)
«© oo
H = I v HZ cos(prx/a) cos(gny/b)
Z =0 =] Pg
p=t q (1-£)
(p,a)#(0,0)
here EX Y , g2 , &% z
where pa ' Epq’ Epq’ Pq,HpqandIi are
field expansion coefficients. If it is

assumed that the wave is incident from
(z=~x), then incident and reflected modes
are existing in region (1) and therefore
any of the above field expansion coeffi-
cients is composed of both incident and
reflected parts, e.g.:

B =gt 4+ & (2-a)
pa jele] ke

g =ut - w” (2-b)
o Pa Pra

The other expansion coefficients are

linear combinations of EF E H
pa’ “pg Pg
. The z-dependence of the (p,g) mode

and

r

o
joi
is assumed to have the form exp(-vy
where:
2

Ypq ~

pg?)

2 2
0r k

(pr/a) %+ (qr /b) 2-kg, k)

w U0€0

(3)
The first region at the right hand
side of the interface (z=0%) is a perfec-
tly conducting step bounded by(0gxga ,
Oéy;dl). In this region there exists an

unknown surface current Es (x,y)given by:

Is

b4 A y o
(x,y)=3_(x,y)1 + I, (x,y) ] (4)
The two components of this surface cur-
rent can be expanded as follows:

T3 (x,y) = (5-a)

o sz(y)cos(pﬂx/a)

L
=0
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Fig.3 Reflection Coefficient of the dominant mode.
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ix,= 2 sz(y)sin(pﬂx/a) (5-b)

p=1

The second and third regions at
right hand side of the interface are the
two regions of the shielded microstrip
that are bounded by (0gx<a, dl§y5d2)

and (OéXéa, d2§y<b). The field compo-
nents in regibn (2) can be expressed as:

2z e x1 ,
E, = E E Tn Enp cos(pwx/a)31n%KJy df
p=0 n=1 (6-a)
- 2 ® vyl
E. = T E s guet
y p£1 n£1 n Enp 1n(pﬂx/a)cossnp(y ﬁ
(6-b)
E=y 3 T E' sin(pn/x)sing__(y-d;)
2 - - n np P np Y 1
p=1 n=1 (6-c)
H = § § T HXl sin(prx/a)cosB__ (y=d4)
X - - n np np 1
pt n ' (6-a)
H_= ; r T Hyl cos (prx/a)sinp__(y-d,)
Y p= - n np = np 1
p=0 n=1 (6-e)
H= 3% y T H cos (prx/a)cosp__ (y=d,)
b4 p=0 n=1 n np np 1

(6-£)

where the z-dependence of the n-th nor-
mal mode in the shielded microstrip is
assumed to have the form exp(—Ynz),and:

2 2 2 2

Bap = Whg + Yp = (P1/a) (7)
EXl ’ Eyl, Zl, HXl, Hyl and HZl are
np np np np np np

expansion coefficients.

The field components in region (3)
are given by a set of equations similar
x1

z2 np
... and HY?, respecti-
np ;

to equations

and HZl by E
np

(6) when replacing E
x2
np’
vely, and Bnp (y-dl) by %np (b-y), where:

R

2 2 2 2
anp = kO + oY, ~ (pn/a) (8)
The expansion coefficients EXl,..
z1 X2 72 np
H np Enp ; oeeey Hn of the n-th normal

mode are all related together, and if
each mode is normalized (e.g. to carry

a unity power), then the only unknowns in
equations (6} and the corresponding
equations representing the field in
region (3) are the transmission coeffi-
cients of the different microstrip modes
T .

n

By matching the field components at

the left and right hand sides of the
interface plane (2=0), the following
equations are obtained:
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b

e fe -~ e - ¢___e _e
gp(y)+ éz p(y )Kp(y,y ) dy hp(y) dp(y).

(d2 ;y;b) and p=0, 1, 2,... (9-a)
h b h h ’ h h

£ + “1k dy”“=h -d

p(y) éz gp(y ) p(y,y ) dy p(y) p(y),
(d, <ysp) and p =1, 2, 3, ... gm)

Let the linear integral operators L. and

-h P
Lp be defined as:

— b e
L [fE(yl=/ £k (y,y)dy’,
P az P

éyéb) and p=0, 1, 2, ... (10-a)

b h
L. (9] =/ gyHK (y,y)hdy” ,
dz P

(a4, gysp) and p =1, 2, 3, ... (10-b)

Also, let the linear operators L:
and Lg be defined in such a way that

their eigenfunctions are sin ap, (b-y) and
cos %np (b-y), respectively , with cor-
responding eigenvalues (Yn/ai ) and(l/GR,

respectively. Equation (9) can be then

re-writen as:

“e [S] re e e e
- [f 1° [f = -
p | p(y)] +ho | p(y)] hp(y) dp(y)
(d, gygh) and p =0, 1, 2,... (11-a)
h ,.h -h h h h
£ =h - d
Lp [fp(y)] + I [ p(y)l p(y) p(y)
(d2 éy;b) and p =1, 2, 3,... (11-b)

MATRIX REPRESENTATION OF
OPERATOR EQUATIONS

According to the concept of matrix
representations of lineaxr operators[1-4]
the following can be stated:

The matrix representation "A" of the
linear operator "L" with respect to the
set of complete and orthogonal functions
{u, } has the elements a, given by:

*
a = <u, (12)

nm , L [um]>

where the form<d¢,y> reoresents the dot
product of the two functions ¢ and Y.
Another matrix representation of the same
operator is the diagonal matrix "A"

which represents "L" with respect to the
set of its eigenvectors {v_}. The ele-
ments of "A" are just the eigenvalues of
"L". The two matrices "A" and "A" are
related by:



T ATt (13)

where "T" is the linear transformation
that transforms the representation with
respect to the set {Vn} to that with

respect to the set {un}

A =

The elements
tnm of the matrix "T" are given by:
*

t = <u ’ v_>

nm n m (14)

Any function "f" belonging to the
domain of the linear operator "L" has
also two column vector representations
"X" and "X" with respect to the sets

{un} and {vn} , respectively. The two
vectors are related by:
X =TX (15)

The elements X5 of the column vector
"X" are given by:
*

X = <u_ ,

£>
n n

(1e6)
Because the period of definition

of all the functions existing in equa-

tion (11) as (d2 <y<b), the dot product

of the two functions f(v) and g(v),
defined on [d2 , bl, may be defined as:
b
g> = [
az
The set of functions {un(y)} defined
by:

<f , f(y) g(y) dy (17)

U, (y) = exp(j2nmy/ (b=d,))/ /T5=a

0, +1, +2, ...

2 r
(18)

is a complete and orthogonal one on
fa, , bl.

n =

The operator equation (11) can be

easily proved to have the following
matrix forms:
e e -e e -e e
T + AT X - =Y,
( P AP P P) P b
p=20,1, 2, ... (19~-a)
h h -h _h h h
T + A T X =Y
( p p P p) P p '
P = 1, 2, 3, ... (19-b)

NUMERICAL RESULTS

If the amplitude distribution of

the incident modes E“"q and ng is known
equation (19) can be solved numerically

for the amplitude distribution of the
transmitted modes T,- The amplitude

distribution of the reflected modes E_
and H;q is obtained then in terms of the

incident and transmitted distributions.
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The simple case of dominant mode
dence,
+

H
pa
The theoretical and experimental

of

inci-
in which all coefficients qu and
+

are zeros except for HlO' is solved.

values
waveguide dominant mode reflection

coefficient defined as:

h

Rio

are plotted in Fig.
the sake of comparison.

in

range of the X-band.

- +
= (Hyy / Hyy) (20)
3 over the X-band for
The results are
good agreement except for the higher
The following rea-

sons account for the deviation between
the two plots.

a-

The accuracy in reading the experi-
mental values, as they were taken
visually from the screen of the net-
work analyzer.,

Tolerance in the measured structure
dimensions and the value of the sub-
strate dielectric constant.

The truncation made in the matrix
equation (19) which is essentially of
infinite order.

The parasitic discontinuities existing
in the measured structure due to the
surface finishing as well as the
solder points.

The marked deviation at high freque-~

ncies between the theoretical and experi-

mental results is mainly
that the different modes
microstrip were obtained
looking for the roots of
equation.

due to the fact
of the shielded
numerically by
a determinental

This contains successive poles

and zeros that become nearer as the fre-
quency is increased, accordingly the
accuracy of finding the roots is decrea-
sed and the possibility of missing a root

is increased as the frequency is increa-
sed.
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